Goto

Collaborating Authors

 Daraa Governorate


DARS: Dynamic Action Re-Sampling to Enhance Coding Agent Performance by Adaptive Tree Traversal

arXiv.org Artificial Intelligence

Large Language Models (LLMs) have revolutionized various domains, including natural language processing, data analysis, and software development, by enabling automation. In software engineering, LLM-powered coding agents have garnered significant attention due to their potential to automate complex development tasks, assist in debugging, and enhance productivity. However, existing approaches often struggle with sub-optimal decision-making, requiring either extensive manual intervention or inefficient compute scaling strategies. To improve coding agent performance, we present Dynamic Action Re-Sampling (DARS), a novel inference time compute scaling approach for coding agents, that is faster and more effective at recovering from sub-optimal decisions compared to baselines. While traditional agents either follow linear trajectories or rely on random sampling for scaling compute, our approach DARS works by branching out a trajectory at certain key decision points by taking an alternative action given the history of the trajectory and execution feedback of the previous attempt from that point. We evaluate our approach on SWE-Bench Lite benchmark, demonstrating that this scaling strategy achieves a pass@k score of 55% with Claude 3.5 Sonnet V2. Our framework achieves a pass@1 rate of 47%, outperforming state-of-the-art (SOTA) open-source frameworks.


Zero-Shot Interactive Text-to-Image Retrieval via Diffusion-Augmented Representations

arXiv.org Artificial Intelligence

Interactive Text-to-Image Retrieval (I-TIR) has emerged as a transformative user-interactive tool for applications in domains such as e-commerce and education. Yet, current methodologies predominantly depend on finetuned Multimodal Large Language Models (MLLMs), which face two critical limitations: (1) Finetuning imposes prohibitive computational overhead and long-term maintenance costs. (2) Finetuning narrows the pretrained knowledge distribution of MLLMs, reducing their adaptability to novel scenarios. These issues are exacerbated by the inherently dynamic nature of real-world I-TIR systems, where queries and image databases evolve in complexity and diversity, often deviating from static training distributions. To overcome these constraints, we propose Diffusion Augmented Retrieval (DAR), a paradigm-shifting framework that bypasses MLLM finetuning entirely. DAR synergizes Large Language Model (LLM)-guided query refinement with Diffusion Model (DM)-based visual synthesis to create contextually enriched intermediate representations. This dual-modality approach deciphers nuanced user intent more holistically, enabling precise alignment between textual queries and visually relevant images. Rigorous evaluations across four benchmarks reveal DAR's dual strengths: (1) Matches state-of-the-art finetuned I-TIR models on straightforward queries without task-specific training. (2) Scalable Generalization: Surpasses finetuned baselines by 7.61% in Hits@10 (top-10 accuracy) under multi-turn conversational complexity, demonstrating robustness to intricate, distributionally shifted interactions. By eliminating finetuning dependencies and leveraging generative-augmented representations, DAR establishes a new trajectory for efficient, adaptive, and scalable cross-modal retrieval systems.


The race to robustness: exploiting fragile models for urban camouflage and the imperative for machine learning security

arXiv.org Artificial Intelligence

Adversarial Machine Learning (AML) represents the ability to disrupt Machine Learning (ML) algorithms through a range of methods that broadly exploit the architecture of deep learning optimisation. This paper presents Distributed Adversarial Regions (DAR), a novel method that implements distributed instantiations of computer vision-based AML attack methods that may be used to disguise objects from image recognition in both white and black box settings. We consider the context of object detection models used in urban environments, and benchmark the MobileNetV2, NasNetMobile and DenseNet169 models against a subset of relevant images from the ImageNet dataset. We evaluate optimal parameters (size, number and perturbation method), and compare to state-of-the-art AML techniques that perturb the entire image. We find that DARs can cause a reduction in confidence of 40.4% on average, but with the benefit of not requiring the entire image, or the focal object, to be perturbed. The DAR method is a deliberately simple approach where the intention is to highlight how an adversary with very little skill could attack models that may already be productionised, and to emphasise the fragility of foundational object detection models. We present this as a contribution to the field of ML security as well as AML. This paper contributes a novel adversarial method, an original comparison between DARs and other AML methods, and frames it in a new context - that of urban camouflage and the necessity for ML security and model robustness.